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Every social interaction is unique—featuring different 
people, times, or places—but many interactions have 
the same general structure. Accordingly, people often 
generalize rewarding experiences with a particular indi-
vidual (“Dr. Smith”) to a more general social role (“pro-
fessor”). By doing so, they can learn about rewards 
available from any individual in that role, such as the 
value of visiting a professor during office hours before 
an exam—regardless of the specific professor. These 
situations exemplify learning across complex relational 
structure, or abstract relationships that hold true across 
different settings. Despite this complexity, people often 
seem to interact easily with new individuals in familiar 
roles. How are people so efficient in using relational 
structure to generalize reward across social roles?

Past research suggests that generalizing reward across 
abstract relationships should be effortful. According to 
this view, people navigate relational structure through 
model-based reinforcement learning—a cognitively 
costly strategy in which one uses an internal model of 

the environment to pursue goals (Daw et al., 2011; Doll 
et al., 2012, 2015; Kool et al., 2017; Otto et al., 2013). 
Specifically, people can consult a cognitive map that 
describes abstract structure—how different entities 
relate to one another or how actions lead to outcomes—
allowing people to prospect into the future, infer new 
paths to reward, and generalize across actions that lead 
to equivalent outcomes (Behrens et al., 2018; Boorman 
et al., 2021; Brown et al., 2016; Doll et al., 2015; Karagoz 
et al., 2022; Park et al., 2021; Wang et al., 2020). For 
instance, if a New Yorker takes the subway to a friend’s 
neighborhood and enjoys a visit, they can infer that 
taking a bus to the same neighborhood will lead to the 
same friend. In contrast, a model-free learner merely 
repeats actions rewarded in the past, regardless of the 
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Humans often generalize rewarding experiences across abstract social roles. Theories of reward learning suggest 
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path that led to reward. Compared with model-free 
learning, model-based learning is cognitively demand-
ing: People are slower to use model-based learning, they 
need to expend more cognitive resources to do so, and 
they tend to avoid it unless they are sufficiently moti-
vated (Kool et al., 2017; Otto et al., 2013).

However, people might learn and generalize more 
easily in social settings. Studies of model-based general-
ization typically use novel tasks featuring novel relation-
ships, which might particularly strain people’s cognitive 
resources with mental labor (Kool et al., 2018; Otto et al., 
2013). Although these studies capture the important task 
of learning in novel environments, they may leave out 
more efficient strategies available to people in familiar 
environments such as social interactions.

Here, we propose such a strategy: People can use 
familiar semantic concepts to generalize reward across 
abstract social roles in a model-free manner. People use 
relational categories (e.g., “helping,” “teaching”) to 
identify individuals in familiar relational roles (“helper” 
and “recipient of help,” “teacher” and “student”; Gentner 
et al., 2011; Gentner & Kurtz, 2005; Goldwater et al., 
2011). People may associate these roles directly with 
reward (e.g., learning that helpers are rewarding), 
allowing them to generalize easily (e.g., choosing to 
interact with other individuals identified as helpers). 
Rather than requiring a learner to plan paths to reward 
with a cognitive map, this strategy would be more akin 
to stimulus–response learning, with an abstract role 
serving as the stimulus. Past work suggests that people 
learn about abstractions through reinforcement (Diuk 
et al., 2013; Eckstein & Collins, 2020; Precup & Sutton, 
1997), even in the absence of prospection or inference; 
for instance, people habitually select abstract goals on 
the basis of reward feedback (Cushman & Morris, 2015). 
People may similarly learn to choose abstract relational 
roles directly through reward feedback; although peo-
ple do often use a model of the world to generalize 
across social roles (e.g., assuming two financial advisors 
share expertise), people may also attach reward to roles 
in a model-free manner. People can thus simplify com-
plex learning problems by using familiar concepts to 
think about complicated structure.

This strategy may be particularly relevant, though 
not unique, to social interaction. Humans are social 
experts with a wealth of semantic concepts that describe 
social relational roles (e.g., “helper,” “adversary,” “defen-
dant”; Atzil et  al., 2018; Kalkstein, Hackel, & Trope, 
2020; Spunt & Adolphs, 2015). In turn, expertise and 
semantic concepts promote relational reasoning 
(Gentner, 2016; Gentner et al., 2011; Goldwater et al., 
2021; Loewenstein & Gentner, 2005). People may there-
fore be especially adept at relational reasoning in social 
domains. Consistent with this proposal, research has 

found that people recognize and reason about rela-
tional structure more easily in social (as opposed to 
nonsocial) settings (Cosmides, 1989; Kalkstein et  al., 
2016; Kalkstein, Hackel, & Trope, 2020; Mason et al., 
2010). Moreover, although no physical pattern in the 
world defines social relations (e.g., helping), people 
are so practiced at recognizing social relations that 
doing so has hallmarks of automatic perception rather 
than deliberate reasoning (Hafri & Firestone, 2021). 
Altogether, although people can use familiar concepts 
in nonsocial settings, there are few (if any) other 
domains of familiarity and expertise so universal. Social 
concepts thus offer a relevant and important test case.

We therefore asked whether people can generalize 
reinforcement learning across social structures with ease 
by learning the reward value of abstract roles described 
by familiar social concepts. We administered sequential 
(two-step) reinforcement-learning tasks featuring two 
social scenes with distinct characters in each; characters 
in different scenes led to the same end states, allowing 
participants to generalize reward feedback across scenes 
on the basis of task structure. We manipulated whether 
characters also embodied roles within the familiar cat-
egory of “helping.” We hypothesized that social concepts 
would ease complex learning: Participants would 

Statement of Relevance

People often need to apply their past social expe-
riences to make choices in new interactions. One 
way people do this is by generalizing rewarding 
experiences with individuals (“Lisa”) to abstract 
social roles (“mentors”). Yet past research suggests 
that this should require slow mental effort as peo-
ple consult a mental map to identify different indi-
viduals who lead to the same outcomes. In this 
research, we explored whether people also rely 
on a simpler but less precise strategy to generalize 
across familiar social roles. People quickly recog-
nize roles described by familiar concepts such as 
“helper” and may associate these concepts directly 
with reward, allowing easy generalization to other 
instances of a concept. Accordingly, we found that 
learning involving familiar social roles led to 
quicker and more extensive generalization, includ-
ing overgeneralization that would not emerge 
through a mental map. Although effortful reason-
ing lets people navigate novel abstract roles, our 
findings suggest that conceptual knowledge sim-
plifies how people navigate familiar roles. This 
work illuminates how humans make complex 
social choices with ease.
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generalize more and at faster speed when characters 
embodied social roles. In two additional experiments, 
we tested whether this pattern emerges because people 
attach reward directly to abstract roles in a model-free 
manner instead of planning with a cognitive map. To 
do so, we tested whether participants would generalize 
reward across social roles even when doing so was not 
warranted by task structure—a pattern that would not 
emerge from model-based inference. These experiments 
thus tested a key role for social concepts in abstract 
reinforcement learning.

Open Practices Statement

Sample sizes, measures, exclusion criteria, and analysis 
plans for Experiments 1b, 2a, and 2b were preregis-
tered. Additional exploratory analyses or deviations are 
described as such below. Preregistration documents are 
available at https://aspredicted.org/SPB_PL9 (Experi-
ment 1b), https://aspredicted.org/Q7H_G8Y (Experi-
ment 2a), and https://aspredicted.org/269_BW5 
(Experiment 2b). Deidentified data and analysis code 
have been made publicly available on OSF and can be 
accessed at https://osf.io/ncdt2.

Experiments 1a and 1b: Social Roles 
Ease Generalization

Method

Overview. We examined reward generalization in the 
presence or absence of familiar social roles that were 
incidental to task structure. Participants completed a 
sequential (two-step) decision task adapted to depict 
social scenes (Doll et al., 2015; Hackel et al., 2019; Kool 
et al., 2017). Participants were told that they would learn 
about four characters who owned stock in one of two 
companies—the Brown Parrot Corporation or the Purple 
Porcupine Company (Fig. 1a). In the first stage of each 
round, participants saw a pair of characters and chose 
one to approach. In the second stage, participants saw 
the chosen character’s stock and pressed a button to 
receive a dividend as a gift. Each character owned one 
stock throughout the task (i.e., transitions from first-stage 
choices to second-stage states were deterministic). The 
task used the logic of generalization to dissociate model-
free and model-based learning (rather than using proba-
bilistic transitions as in an alternate variant of the two-step 
task developed by Daw et al., 2011).

To allow generalization on the basis of task structure, 
we ensured that characters always appeared in consis-
tent pairings and that each stock was owned by one 
character in each scene (Figs. 1b and 1c). A learner 
using model-based prospection could therefore 

generalize across scenes by considering the stock each 
character owns: After choosing a character who owns 
the Brown Parrot stock (e.g., the man in the green shirt) 
and receiving a large reward, this learner could choose 
the character in the other scene who owns the same 
stock (the woman in the blue shirt). In contrast, a 
model-free learner would fail to generalize across scenes 
because that learner would have no model indicating 
that different characters lead to the same stock (Doll 
et  al., 2015; Kool et  al., 2017). Instead, a model-free 
learner would simply attach reward to a particular char-
acter (“man in green shirt”) and choose that character 
again. Model-based choices in this task relate to neural 
markers of prospection (Doll et al., 2015), depend on a 
cognitive map (Karagoz et al., 2022), and increase when 
people face higher stakes (Kool et al., 2017).

Critically, each participant was randomly assigned to 
see one of two versions of the scenes. In the congruent-
social-roles condition (present in both Experiments 1a 
and 1b), each scene displayed one person helping 
another. The scenes displayed different concrete behav-
iors, but characters could be aligned across scenes as 
“helpers” or “recipients of help.” Social roles were con-
gruent with task structure: Both helpers owned one 
stock and both recipients of help owned the other 
stock. Participants could therefore make choices by 
tracking which role was rewarding, using roles as a cue 
to reward. In the no-social-roles condition (Experiment 
1a), the scenes showed the same characters standing 
still with no interaction, and in the incongruent-roles 
condition (Experiment 1b), social roles were incongru-
ent with task structure. In these conditions, participants 
therefore had to track which stocks were rewarding and 
align scenes through model-based prospection (i.e., 
considering which characters led to rewarding stocks).

Both social roles and stock ownership could thus 
allow structural alignment (i.e., mentally aligning char-
acters across scenes) and analogical transfer (i.e., trans-
ferring reward from a character to their counterpart in 
the other scene). However, social roles involved familiar 
concepts, whereas stock ownership involved a novel 
cognitive map. We hypothesized that social roles would 
allow greater generalization with lower cognitive cost. 
Alternatively, traditional approaches suggest that gen-
eralizing reward on the basis of abstract relationships 
is effortful (Kool et al., 2017; Otto et al., 2013). Social 
roles are abstract, with no one percept defining them. 
If people use only slow and effortful model-based 
learning to generalize across abstract relationships, then 
adding an abstract social role should require additional 
(rather than less) processing. In this case, familiar con-
cepts would not make learning easier; participants 
either would show no differences in learning or would 
be slowed down by considering another abstract role.

https://aspredicted.org/SPB_PL9
https://aspredicted.org/Q7H_G8Y
https://aspredicted.org/269_BW5
https://osf.io/ncdt2
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Participants. Participants were recruited on the Cloud 
Research platform and participated in exchange for pay-
ment in both Experiment 1a (N = 175; 68 women, 105 
men, two preferred not to disclose gender; age: M = 39.21 
years, SD = 11.90) and Experiment 1b (N = 277; 122 
women, 153 men, two nonbinary; age: M = 40.09 years, 
SD = 11.50). In Experiment 1a, sample size was chosen to 
provide 90% power to detect a moderate effect size (d = 
0.5). In Experiment 1b, sample size was chosen on the 
basis of the effect size observed in Experiment 1a. In both 
experiments, additional participants were recruited to 
account for exclusions. In Experiment 1b, the preregis-
tered sample size was 275 participants; two additional 
participants completed the study without requesting pay-
ment. Results remained the same when we excluded 
these two participants. Informed consent was obtained 
from all participants in accordance with review and 
approval from the University of Southern California Office 
for Protection of Human Subjects. For additional informa-
tion, see the Supplemental Material available online.

To ensure that participants were actively engaged in 
the task, we administered exclusion rules used in prior 
work, removing data from any participant who did not 
respond to at least 80% of first-stage and second-stage 
choices and who had mean reaction times greater or 
less than 2 standard deviations from the group mean 
(Gillan et al., 2015; Hackel & Zaki, 2018; Kool et al., 
2017). These criteria left 151 participants for analysis in 
Experiment 1a and 242 participants in Experiment 1b.

Stimuli. Participants saw two social scenes. In Experi-
ment 1a, each scene either showed a pair of individuals 
standing still or showed one individual helping the other. 
In Experiment 1b, we ensured that any resulting effects 
of condition were not due to other differences in the 
stimuli; for instance, scenes featuring social interaction 
might be more engaging than scenes without interaction. 
To rule out this possibility, we created scenes that always 
featured a helper and a recipient of help (Figs. 1e and 
1f). In the congruent-roles condition, task structure again 
aligned with social roles; the two helpers owned the 
same stock, and the two recipients of help owned the 
same stock. In the incongruent-roles condition, task 
structure was misaligned with social roles: The helper 

from each scene owned the same stock as the recipient 
of help from the other scene. In Experiment 1b, we also 
replaced one helping scene with a new scene featuring 
emotional help, thus testing a broader range of behaviors 
within the abstract category “helping.”

Procedure. Participants completed 152 rounds of a 
sequential decision-making task. On each trial, partici-
pants had 1.5 s to choose between two characters in a 
first-stage scene; participants were told that by approach-
ing these individuals, they would be able to receive a 
dividend from that person’s stock as a gift. Trials began in 
one of the two social scenes, evenly and randomly dis-
tributed throughout the task. On every trial, each charac-
ter had an equal probability of appearing on the right or 
left side of the screen.

After choosing a character, participants then observed 
a transition to a second stage, in which the social scene 
faded from the screen and a stock logo appeared. The 
transition lasted from the participant’s response until 
the end of the response window; this meant that each 
trial lasted for the same amount of time, and partici-
pants could not complete the task sooner by respond-
ing more quickly. The link between characters and 
stocks (i.e., which pair of characters led to which logo) 
was randomized across participants.

Stocks in the second stage were represented by col-
orful animal stimuli, which participants were told rep-
resented logos for different companies. Participants had 
1.5 s to press a button in the second stage to reveal a 
reward. After the button press, a frame appeared around 
the stock logo until the response window had passed 
(again ensuring equal trial timing for all participants), 
at which point the reward feedback was displayed for 
1.5 s. Rewards in each trial varied from 0 to 9 points, 
with Gaussian drift (SD = 2; Kool et  al., 2017). One 
stock was initialized to a random value between 0 and 
4 points, and the other was initialized to a random 
value between 5 and 9 points, with stocks randomly 
assigned to one of the two ranges. Dividends consisted 
of points, which served as raffle tickets for a $5 bonus.

Before beginning the task, participants first read 
extensive instructions, which contained practice trials 
for each stage of the task (see the Supplemental 

Fig. 1. Stimuli and trial sequence in Experiments 1a and 1b. (a) Participants chose between two characters in a first-stage scene. Choices 
led to logos representing stocks in the second stage via deterministic transitions; after pressing a button, participants received a reward. 
On subsequent trials, participants could generalize by choosing the character in the other scene who owned the same stock. In Experi-
ment 1a, each participant was randomly assigned to either (b) a no-social-roles condition, in which characters did not embody relational 
social roles, or (c) a congruent-social-roles condition, in which characters embodied familiar roles of “helper” (helping up someone 
who fell, performing the Heimlich maneuver) or “recipient of help.” Characters with the same social role owned the same stock. In 
Experiment 1b, all participants saw characters enacting helping (helping up someone who fell, comforting someone in distress). Each 
participant was randomly assigned to either (d) an incongruent-social-roles condition, in which characters with the same social role 
led to different stocks, or (e) a congruent-social-roles condition, in which characters with the same social role owned the same stocks.
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Material). After the task, participants were queried for 
their explicit knowledge about task structure (see the 
Supplemental Material).

Analytic procedures. To examine the extent of gener-
alization in each condition, we fitted participant choices 
to a computational model that allows for a hybrid of 
model-based and model-free learning (Doll et al., 2015; 
Kool et al., 2017). The model-based component uses the 
transition structure of the task to identify characters who 
will lead to desirable stocks and can therefore generalize 
across scenes. The model-free component chooses char-
acters that previously led to reward without considering 
the stock each character owns. A weighting parameter w 
reflects the balance between model-free (w = 0) and 
model-based (w = 1) control. Although this model for-
mally characterizes generalization through prospection, 
prospection and role-based learning make identical pre-
dictions in this task (i.e., generalization across scenes). 
We therefore used this model to characterize the degree 
of generalization in both conditions (using rank-sum 
tests because of nonnormality of the distribution), allow-
ing us to compare the two conditions with each other 
and with past work on equal terms. (See the Supplemen-
tal Material for further details regarding computational 
modeling.) We interpreted the w parameter as a measure 
of generalization across structure (rather than prospec-
tion per se).

To characterize the cognitive cost of learning, we 
examined reaction times during first-stage choices 
(excluding reaction times faster than 200 ms). Reaction 
times were fitted to mixed-effects linear regression 
models with the following predictors: condition (1 = 
congruent social roles, –1 = no/incongruent social 
roles), reward feedback (standardized within partici-
pants to z scores), and whether each trial began in the 
same scene or different scene relative to the trial before 
(1 = same starting scene, –1 = different starting scene), 
in order to model the effect of task variables that dif-
fered across trials.

Results

We found that social roles allowed greater generaliza-
tion with lower cognitive cost. Participants in Experi-
ment 1a generalized more in the congruent-roles 
condition (median w = .66) than in the no-roles condi-
tion (median w = .38), z = −2.84 p = .004 (rank-sum 
test; d = 0.50; Fig. 2a). Yet despite generalizing more, 
participants responded more quickly in the congruent-
roles condition (M = 590.68 ms, SD = 106.88) than in 
the no-roles condition (M = 665.82 ms, SD = 136.93),  
b = −39.56, SE = 9.41, t(148) = −4.20, p < .001 (d = 0.61; 
Fig. 2b). Participants who could align task structure 
with social roles thus generalized to a greater extent 

while responding more quickly. This finding suggests 
that these participants did not generalize through 
model-based prospection, which typically produces 
slower reaction times relative to model-free control 
(Otto et  al., 2013), and instead used the less costly 
strategy of choosing rewarding roles.

Participants in the congruent-roles condition also 
displayed lower switch costs in reaction time. When a 
model-free learner sees different scenes across two tri-
als, they must adapt to the new scene and may respond 
more slowly than when seeing the same scene twice. 
In contrast, a learner who focuses perfectly on abstract 
structure should have no switch costs; this learner 
would view the two scenes as identical because both 
scenes have the same abstract structure (Doll et  al., 
2015). When scenes switched across trials, participants 
in the congruent-roles condition slowed less than those 
in the no-roles condition, as revealed by an interaction 
of condition and starting scene, b = 5.15, SE = 2.47, 
t(148.39) = 2.08, p = .04. This result suggests that par-
ticipants who saw social roles were more robustly able 
to mentally align the scenes and respond on the basis 
of abstract structure.

The results of Experiment 1b ruled out the possibility 
that this pattern was due to other differences in the 
stimuli across conditions, such as engagement due to 
the presence or absence of social interaction. All par-
ticipants in Experiment 1b viewed the same stimuli, but 
social roles were either congruent or incongruent with 
task roles. When social roles did not align with task 
structure, participants would need to use model-based 
prospection to succeed in the task (e.g., “choose the 
character who leads to the brown stock”). In contrast, 
when social roles aligned with task structure, partici-
pants could switch to an easier role-based strategy (e.g., 
“choose helpers”). Consistent with this view, results 
showed that the weighting parameter w was greater in 
the congruent-roles condition (Mdn = .67), than in the 
incongruent-roles condition (Mdn = .35), z = −5.48, p < 
.001 (rank-sum test; d = 0.76). Participants in the con-
gruent-roles condition again responded more quickly 
overall, b = −28.50, SE = 6.68, t(239.67) = −4.26, p < 
.001 (d = 0.51), and showed lower switch costs in reac-
tion time, b = 9.67, SE = 1.98, t(235.80) = 4.90, p < .001. 
These findings rule out engagement as an alternate 
explanation, instead supporting the proposal that par-
ticipants generalized by focusing on social roles.

Experiments 2a and 2b: Overgeneralization 
Across Familiar Social Roles

Method

Overview. In Experiments 1a and 1b, participants gen-
eralized more often and more easily across scenes when 
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they could focus on familiar roles instead of novel transi-
tions—a quantitative shift in generalization. This pattern 
is consistent with the proposal that participants used dif-
ferent strategies in each condition—learning about the 
reward value of roles versus prospecting about stocks. 
However, Experiments 1a and 1b did not qualitatively 
dissociate these strategies, given that both strategies  
predict generalization. These studies leave ambiguous 
whether familiar social roles truly led participants to 
adopt a different learning strategy or whether social roles 

simply facilitated model-based prospection. We therefore 
conducted Experiments 2a and 2b to test our proposed 
mechanism—namely, that people associated social roles 
directly with reward.

To do so, we tested qualitatively different predictions 
of model-free learning, model-based prospection, or 
role-based learning. Participants again saw two scenes 
in which social roles aligned with task structure: Two 
helpers owned the same stock, and two recipients of 
help owned the same stock. However, we introduced 
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a third scene featuring a helper and recipient of help 
in which each character owned a unique stock; the task 
structure in this scene was thus unrelated to the task 
structure of the first two scenes (Fig. 3a). This design 
allowed qualitatively different predictions for model-
free, model-based, or role-based learning, rather than 
the quantitative shifts observed in Experiments 1a and 
1b. A model-free learner again would not generalize 
reward across scenes at all, because they associate 
reward with individual characters (e.g., “choose the man 
in the green shirt”). Even though transitions are deter-
ministic, this learner does not know that “woman in the 
blue shirt” owns the same stock, nor does it know that 
both characters have the same social role. As a result, 
receiving a reward would lead only a model-free learner 
to choose the same exact character in the exact same 
scene again (but not characters in any other scenes).

A model-based learner using prospection would gen-
eralize reward only across the two scenes that share 
task structure because they make choices on the basis 
of transitions to stocks (e.g., “choose someone who 
owns the brown stock”). Given that transitions are 
deterministic, they know that if “man in green shirt” led 
to a large reward, then “woman in blue shirt” will likely 
lead to a large reward, as she is guaranteed to lead to 
the same stock. However, a model-based learner using 
task structure would not care about whether characters 
are depicted as helpers or recipients of help, because 
this is irrelevant to the stocks they own. As a result, 
receiving a reward would lead a model-based learner 
to choose characters who own the same stock again 
(but not characters who own different stocks).

Finally, a role-based learner would generalize reward 
across all three scenes, because they make choices on 
the basis of social roles (e.g., “choose a helper”). A 
role-based learner construes characters in terms of their 
roles, seeing each action as “choose helper” or “choose 
recipient of help.” The role-based learner does not use 
knowledge about stocks; they simply learn which 
abstract role leads to reward (choosing helpers or recip-
ients of help). Because each scene has a helper and a 
recipient of help, the role-based learner generalizes 
across all three scenes.

Altogether, “the green character” appears only in one 
scene, “someone who owns the brown stock” appears 
in two scenes, and “helpers” appear in all three scenes. 
Depending on which representation a learner uses, they 
would apply reward feedback to characters in one, two, 
or three scenes. This experiment thus let us examine 
how much participants relied on each strategy. We 
hypothesized that participants would generalize on the 
basis of social role, even when doing so was not rel-
evant to the task structure. This finding would indicate 
that people learn to associate social roles directly with 

reward. Alternatively, traditional approaches suggest 
that people generalize across abstract relationships 
using a cognitive map of task structure; if participants 
use social roles only to facilitate planning within task 
structure, then they would generalize across social roles 
only when relevant to task structure.

Participants. Participants were recruited on the Cloud 
Research platform and participated in exchange for pay-
ment in both Experiment 2a (N = 60; 31 women, 29 men; 
age: M = 37.32 years, SD = 9.68) and Experiment 2b (N = 
65; 25 women, 39 men, one preferred not to disclose 
gender; age: M = 38.97 years, SD = 11.28). In Experi-
ment 2a, sample size was set heuristically given the 
within-participants design and large number of trials. In 
Experiment 2b, sample size was set on the basis of a 
simulation-based power analysis using Experiment 2a 
data; additional participants were recruited to account for 
potential exclusions. We applied the same exclusion rules 
as in Experiments 1a and 1b. In Experiment 2a, the sec-
ond exclusion rule (regarding reaction times) was left out 
of the preregistration because of an error. We report anal-
yses keeping both rules for consistency across studies; 
however, using only the first rule regarding response 
rates in Experiment 2a did not change the results. These 
criteria left 57 participants in Experiment 2a and 60 par-
ticipants in Experiment 2b.

Procedure. The task design was similar to that in Exper-
iments 1a and 1b, with the following changes. First, par-
ticipants learned about three social scenes featuring 
helpers and recipients of help. For two scenes, social 
roles were congruent with task structure: Both helpers 
owned the same stock, and both recipients of help 
owned the same stock. For a third scene, however, social 
roles were unrelated to task structure: Both the helper 
and recipient of help owned unique stocks (Fig. 3a). This 
addition allowed us to ask whether participants would 
generalize reward across social roles even when roles 
were unrelated to task structure.

In Experiment 2a, all scenes featured characters of 
the same gender in order to reduce variability associ-
ated with social categories, and scenes were randomly 
assigned to different stock contingencies across partici-
pants (e.g., having shared or unique stocks). In Experi-
ment 2b, to provide a more conservative test of 
role-based learning, we made the scene with unrelated 
task structure visually distinct from the others. Specifi-
cally, this scene featured female characters, whereas 
the two scenes with shared structure featured male 
characters (Fig. S1 in the Supplemental Material). This 
gender difference made it easier for participants to 
immediately recognize that this scene had a distinct 
task structure (see the Supplemental Material).
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Participants completed 180 trials of the learning task. 
To ensure that participants would see each trial type 
enough times, we pregenerated 25 pseudorandom 

stimulus orders in which there were at least 36 trials 
each for same-scene, same-task-structure, and different-
task-structure trial types. Each participant was randomly 

+9 +9 +9

Same
Scene

Same
Task Structure

Unrelated
Task Structure

b

a

Fig. 3. Stimuli and trial sequence in Experiment 2a. (a) In two scenes, characters with the same social role led to the same stocks. In 
a third scene, characters led to unique stocks. (b) This design produced three trial types that dissociated learning strategies. Across any 
two trials in the task, participants could see the same scene twice in a row, different scenes with the same task structure, or different 
scenes with unrelated task structure. After choosing a helper (designated here by a red circle) and receiving a large reward, a model-
free learner would choose a helper on the next trial only when seeing the same scene again. A model-based learner using prospection 
would also choose a helper when seeing a different scene with the same task structure. A role-based learner would choose a helper 
again even when seeing a different scene with an unrelated task structure.
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assigned to one of these 25 stimulus orders. The rewards 
provided by each stock again fluctuated independently 
over the course of the task, as in Experiments 1a and 
1b, such that the rewards provided by one stock were 
uninformative about the rewards provided by another 
stock. After each experiment, participants were asked 
about the transition structure and reward structure of 
the task (see the Supplemental Material).

Analytic procedures. Our primary analyses examined 
qualitative patterns of choice, asking whether large 
rewards on one trial led participants to choose a charac-
ter embodying the same social role again on the next trial 
(Fig. 3b). We asked whether this tendency depended on 
whether both trials depicted the same scene, different 
scenes with the same task structure (i.e., the same social 
roles leading to the same stocks), or different scenes with 
unrelated task structure (i.e., the same social roles lead-
ing to unique stocks). To do so, we fitted first-stage 
choices to a lagged mixed-effects logistic regression 
model predicting, on a trial-by-trial basis, whether partici-
pants repeated their most recent choice of social roles  
(1 = stay, 0 = switch). Predictors were the reward earned 
on the previous trial (standardized within participants to 
z scores) and whether the previous trial started in the 
same scene, a different scene with the same task struc-
ture, or a different scene with an unrelated task structure. 
This model approximated the full reinforcement-learning 
model by asking whether participants stay with their pre-
vious choice as a function of feedback and transition 
structure (Doll et al., 2015; Otto et al., 2013). We fitted the 
model using different dummy-coding schemes to exam-
ine different patterns of interest (see the Supplemental 
Material for more detail). Models were fitted using the 
lme4 package (Bates et  al., 2015) in R (R Core Team, 
2016). Random variances were allowed for the intercept 
and all slopes that varied within participants (see Table 
S3 in the Supplemental Material for all coefficients).

Results

Participants used a mix of model-free learning, model-
based prospection, and role-based learning (Fig. 4a). 
Consistent with model-free learning, participants tended 
to choose the same social role after reward across con-
secutive trials featuring the same scene (main effect of 
reward in same-scene trials: b = 1.25, SE = 0.08, z = 
15.36, p < .001). Consistent with model-based prospec-
tion, participants also chose the same social role after 
reward across trials featuring different scenes with a 
shared task structure (main effect of reward in same-
task-structure trials: b = 0.82, SE = 0.07, z = 11.68, p < 
.001); a slight decline in the effect of reward highlighted 

distinct contributions of model-free learning and model-
based prospection (b = 0.51, SE = 0.09, z = 5.50, p < 
.001). Consistent with role-based learning, participants 
chose the same social role after reward more often than 
chance even across trials that featured different scenes 
with unrelated task structures (main effect of reward in 
unrelated-task-structure trials: b = 0.33, SE = 0.05, z = 
6.19, p < .001); a decline in the effect of reward high-
lighted distinct contributions of model-based prospec-
tion and role-based learning (b = 0.56, SE = 0.09, z = 
6.54, p < .001).

Supporting these analyses, we fitted participant 
choices to three computational models of learning. The 
first was the standard hybrid model of model-free and 
model-based learning described in Experiments 1a and 
1b. The second model added a third learning strategy 
in which learners construe characters as social roles 
and associate roles directly with reward. Specifically, 
after choosing a stimulus, model-free learning was gen-
eralized to other stimuli that embodied the same social 
role, scaled by a generalization parameter g between 0 
(no generalization) and 1 (full generalization). In a third 
model, the generalization parameter was also applied 
to perseveration, or a tendency to stick with the same 
choice across trials regardless of reward feedback; par-
ticipants who construe characters as social roles might 
stick with the same social role across trials (see the 
Supplemental Material for more detail). The full model 
including role-based learning and role-based persevera-
tion provided the best fit to behavior, protected exceed-
ance probability = .95 (median g = .51). These findings 
replicated in Experiment 1b, across regression analyses 
and computational modeling (Fig. 4c; see also Tables 
S3–S5 in the Supplemental Material).

We next examined reaction times during first-stage 
choices, hypothesizing that reaction times would vary by 
trial type. (These analyses were exploratory in Experiment 
2a and preregistered in Experiment 2b.) When partici-
pants saw the same scene across two trials, they could 
choose or avoid the same character, allowing fast 
responses. When participants saw a different scene with 
the same task structure as in the previous trial, they 
may have experienced a switch cost, leading to slower 
responses. Finally, when participants saw a scene with 
unrelated task structure relative to the previous trial, 
prospection and role-based learning would conflict, lead-
ing to even slower responses. To test these predictions, 
we fitted reaction times to a mixed-effects linear regression 
model using the same predictors as in the analysis of 
choice (again excluding reaction times faster than 200 ms).

Consistent with these hypotheses, reaction times in 
Experiment 1a were fastest for same-scene trials (M = 
622 ms, SD = 102), slower for same-task-structure trials 
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(M = 697 ms, SD = 131), b = 75.28, SE = 7.59, t(59.81) = 
9.92, p < .001, and slowest for unrelated-task-structure 
trials (M = 745 ms, SD = 135), b = 121.10, SE = 9.14, 
t(59.91) = 13.25, p < .001 (Fig 4b; see also Table S6 in 
the Supplemental Material). These findings again rep-
licated in Experiment 2b (Fig. 4d; Table S6).

Exploratory analyses further supported the idea that 
role-based learning promotes cognitive ease. For each 
participant, we computed the probability that they 
would select their chosen option on each trial under 

models that used only model-free, model-based, or role-
based learning (but otherwise using each participant’s 
best-fitting parameters). This approach gives a trial-by-
trial index reflecting how consistent each choice was 
with each form of learning (Duncan et al., 2018). We 
asked how reaction times changed when participants 
made higher-value (as opposed to lower-value) choices 
under each value representation. Reaction times were 
analyzed using mixed-effects regression, with all three 
value terms serving as predictors in one model 
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Fig. 4. Experiment 2a and 2b results across choice and reaction time. (a) Qualitative patterns of choices in Experiment 2a revealed 
contributions of model-free learning, model-based prospection, and role-based learning. After receiving a large reward, participants 
were most likely to stay with the same social role on the next trial if they saw the same scene again, a little less likely to stay with 
the same role if they saw a different scene with the same task structure, and less likely—but more likely than chance—to stay with 
the same role when they saw a scene with an unrelated task structure relative to the previous trial. High and low reward corre-
sponds to reward values below or above the midpoint of the reward distribution. (b) Reaction times in Experiment 2a were fastest 
when the same scene was viewed across two trials, slower when different scenes featuring the same task structure were viewed 
across two trials, and slowest when different scenes featuring unrelated task structure were viewed across two trials. Experiment 
2b replicated these patterns across (c) choice and (d) reaction time. In all panels, error bars indicate standard errors of the mean 
with within-participants adjustment (Morey, 2008), and dots indicate raw data points (with jitter), with darker shades representing 
greater density of data points.
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(standardized within participants to z scores). For 
model-based values, the relationship between value 
and reaction time was small and nonsignificant, b = 
−6.84, SE = 4.40, t(93.07) = −1.56, p = .12; that is, reac-
tion times were not significantly faster when partici-
pants made choices with higher versus lower 
model-based values, consistent with the idea that 
model-based learning requires slow inference. In con-
trast, reaction times were significantly faster when 
choices were more consistent with model-free value, b = 
−20.61, SE = 3.71, t(82.75) = −5.56, p < .001, or with 
role-based value, b = −22.53, SE = 3.42, t(63.80) = −6.59, 
p < .001. A contrast of coefficients for role-based versus 
model-based value indicated that these coefficients dif-
fered significantly from one another, χ2(1) = 6.57, p = 
.01, consistent with the idea that distinct cognitive pro-
cesses supported role-based and model-based choice. 
(Experiment 2b made model-based learning easier by 
providing gender as a visual cue to task structure, thus 
changing the dynamics of model-based learning by 
reducing its cognitive cost—a change reflected in sig-
nificantly higher w parameters, as described in the 
Supplemental Material. Nonetheless, the same qualita-
tive pattern emerged, and analyzing the combined data 
of Experiments 2a and 2b yielded identical inferences; 
see the Supplemental Material, including Table S8).

Altogether, we found that participants made choices 
through a combination of model-free learning (choos-
ing characters that previously led to rewards), model-
based prospection (choosing characters that led to 
rewarding stocks), and role-based learning (choosing 
social roles that previously led to reward). Participants 
thus construed characters in terms of abstract social 
roles and chose accordingly.

General Discussion

Social interactions are complex (FeldmanHall & Nassar, 
2021), but humans are adept at navigating them. Here, 
we identified a reinforcement-learning strategy that 
allows humans to generalize over abstract social struc-
ture with ease: People directly learn the reward value 
of relational roles described by familiar semantic con-
cepts (e.g., “helpers”), allowing them to generalize eas-
ily across different individuals who embody those roles.

This finding identifies a route to reward generaliza-
tion without cognitively costly inference or planning. 
When people mentally align two scenes—recognizing 
how features of one map onto features of a second—
they can transfer knowledge across them (Gick &  
Holyoak, 1983; Holyoak, 2012). Although alignment can 
stem from representing paths to a goal in a cognitive 
map (e.g., “Peter and Ana both know a lot about San 
Francisco and can give helpful advice about visiting”), 

alignment can also stem from recognizing familiar roles 
in relational categories (e.g., “Peter and Ana are both 
tour guides”). Alignment through familiar concepts 
enabled relatively efficient learning; participants made 
faster choices when social roles aligned with task struc-
ture. At the same time, this strategy led to overgener-
alization; participants chose social roles even when 
roles were unrelated to task structure. Altogether, 
whereas past work suggests that people use an effortful 
cognitive map to generalize across abstract relation-
ships (Karagoz et al., 2022), we found that people can 
use simpler reward association when construing stimuli 
in terms of familiar concepts.

These findings suggest a continuum of reinforcement 
learning across levels of abstraction. At one end, people 
learn to repeat concrete actions (“choose the option on 
the left”; Shahar et al., 2019) or choices of stimuli (“choose 
Peter”; Daw et al., 2011; Doll et al., 2015). Choosing a 
stimulus—as in traditional model-free learning—requires 
abstracting object identity across time and space, but this 
abstraction is relatively inflexible because it is tied to one 
entity. At the other extreme, people learn to repeat 
actions that lead to an end state or a goal, as in model-
based learning rooted in prospection (Doll et al., 2015; 
Kool et al., 2017). Model-based prospection is a form of 
abstraction because it creates classes of equivalency 
based on whether stimuli lead to a given end state (e.g., 
“choose things-that-lead-to-the-red-room”)—a feature 
that makes it particularly flexible, given that any two 
stimuli can be linked ad hoc on the basis of environmen-
tal structure and goals (Barsalou, 1983; Gilead et al., 2019; 
Rosch et al., 1976). Here, we identify a strategy wherein 
people repeat choices of abstract relational roles, akin to 
model-free learning with an abstract role as the input. 
This strategy offers more flexibility than traditional 
model-free learning because it transcends particular stim-
uli, but it offers less flexibility than model-based prospec-
tion because it is tied to preexisting (rather than ad hoc) 
relationships. Together with prior work demonstrating 
habitual goal selection (Cushman & Morris, 2015), this 
work highlights different ways in which abstract concepts 
support reinforcement learning.

An alternative interpretation of Experiments 2a and 
2b is that participants did use model-based inference to 
generalize across roles, building a model of the task in 
which stocks owned by characters in the same role were 
correlated with one another. We believe that this inter-
pretation is less likely for four reasons. First, participants 
did not experience correlated stocks; different stocks 
drifted independently, meaning that a model-based 
learner should assign predictive value to stocks rather 
than to roles. Second, participants did not expect cor-
related stocks; they were carefully instructed that stocks 
would fluctuate independently and had to correctly 
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answer a quiz question affirming this point; results fur-
ther remained the same when we restricted analyses to 
participants who reported after the task that stocks were 
uncorrelated (and who had perfect knowledge of the 
transition structure; see the Supplemental Material). 
Third, in Experiment 2a, participants were relatively slow 
to make choices based on task structure—consistent with 
the idea that model-based inference requires slow 
effort—but faster to make choices based on model-free 
or role-based values. Fourth, the best-fitting model 
included perseveration based on roles; participants were 
likely to stick with the same role across trials regardless 
of reward outcome. This finding suggests they construed 
actions in terms of roles (“choose helpers” vs. “choose 
recipients of helps”) rather than using roles solely to 
reason about which individual characters owned reward-
ing stocks. (For further discussion of related interpreta-
tions, see the Supplemental Material).

At the same time, in Experiments 1a and 1b, it is 
likely that participants did use their model of task struc-
ture to recognize that helpers owned the same stock, 
after which they learned in terms of the social roles. 
People may thus use a cognitive map to initially deter-
mine which concepts are relevant, after which they can 
use the concepts during learning without referring back 
to the cognitive map. Future work can further explore 
this intersection of learning processes.

Role-based learning may help people navigate social 
systems, letting people easily learn how to interact with 
different individuals who occupy identical roles as com-
petitors, peer reviewers, or assistants. In the present 
work, social roles were not inherently related to task 
structure, allowing us to experimentally dissociate the 
influence of each. However, in daily life, it is likely that 
people use relational categories because these categories 
usually do relate to reward structure; in a medical emer-
gency, the role of “doctor” can lead to reward, and when 
a worker needs to borrow a stapler, a “helper” can lead 
to reward. Reward learning may therefore be intertwined 
with concept development. As people compare social 
scenarios and identify common features that lead to 
reward, they may develop relational categories (Gentner 
& Kurtz, 2005). These categories can then ease future 
reward generalization. This process is distinct from ste-
reotypes, which are thought to reflect semantic associa-
tions rather than reward associations (Amodio, 2019). To 
generalize reward feedback based on stereotypes, people 
might use semantic knowledge in model-based planning 
(e.g., “I think this group is trustworthy, therefore they are 
likely to repay a loan”). In contrast, the present work 
suggests that people directly associate a social role itself 
with reward. Although we expect these findings to apply 
to anyone who quickly recognizes a given role, these 
experiments were conducted with adults in the United 

States, and future work can test the extent to which these 
findings generalize to other samples.

Although we examined relational categories, other 
kinds of categories might also facilitate generalization, 
such as categories describing social groups (Dunsmoor 
& Murphy, 2014; Hackel et al., 2022; Kalkstein, Bosch, & 
Kleiman, 2020; Osherson et al., 1990). And although we 
examined social structure, people may easily generalize 
reward in nonsocial settings whenever they have exper-
tise and fluency with structure (Goldwater et al., 2021). 
For instance, a New Yorker might generalize across sub-
way lines more easily than a tourist who has recently 
memorized the subway map. Nonetheless, although 
people can learn through familiar concepts in any 
domain—whether social or nonsocial—social settings 
offer a useful prototype. First, social interaction is a 
domain in which most people are deeply familiar with 
abstract concepts; humans are social experts who readily 
recognize relational structure in social settings (Hafri & 
Firestone, 2021; Kalkstein, Hackel, & Trope, 2020; Mason 
et  al., 2010). Second, social interaction is a crucial 
domain for survival and well-being, yet it is a domain in 
which people face particularly complex learning tasks 
(FeldmanHall & Nassar, 2021). As a result, it is important 
to understand how people navigate that complexity.

By identifying a role for familiarity and conceptual 
ease in reinforcement learning, the present findings 
raise new perspectives on model-based control in 
humans. Recent work suggested that humans primarily 
use model-based learning and that model-free learning 
observed in past experiments reflects confusion about 
instructions; when participants viewed expanded 
instructions that clarified each element of a task, they 
were primarily model based (Feher da Silva & Hare, 
2020). However, in Experiments 1a and 1b of the pres-
ent work, all participants read identical instructions; 
clarity of instructions therefore cannot account for par-
ticipants’ lack of generalization when roles did not align 
with task structure. These results raise the possibility 
that conceptual difficulty, rather than misunderstanding 
of instructions, hampered learning in past work. Indeed, 
people learn contingencies more easily when tasks are 
framed with meaningful and familiar labels as opposed 
to abstract and arbitrary labels (Camerer, 1981; Murphy 
& Medin, 1985; Wright & Murphy, 1984). Experiments 
that explain all elements of a task with an intuitive nar-
rative (Feher da Silva & Hare, 2020) or that give partici-
pants extensive practice (Economides et al., 2015) may 
increase model-based control by increasing the con-
ceptual ease of using the model.

More broadly, the present work suggests an important 
interface between reinforcement learning and concep-
tual knowledge. Studies of human reinforcement learn-
ing often use novel scenarios and stimuli, illuminating 
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how people learn about unfamiliar structure—a key 
challenge for humans to initially make sense of the world 
or to navigate novel settings. However, real-life learning 
often involves familiar relations that people recognize 
fairly automatically (Hafri & Firestone, 2021) and familiar 
concepts that help people make sense of new information 
(Murphy & Medin, 1985). People may therefore generalize 
over familiar structures more easily than would be pre-
dicted by previous studies of model-based control.

In short, we found that people directly learn the 
value of abstract roles described by familiar social con-
cepts, allowing them to generalize reinforcement learn-
ing across social structure with low cognitive cost. A 
key source of human social success may lie in the social 
concepts we develop early in life (Atzil et al., 2018); 
these concepts help people become social experts who 
easily perceive, reason about, and make decisions 
involving abstract social relations (Cosmides, 1989; 
Hackel et al., 2020; Heider, 1958; Kalkstein, Hackel, & 
Trope, 2020; Mason et al., 2010; Read, 1987; Todorov 
& Uleman, 2002; Winter & Uleman, 1984). Social inter-
action may thus offer a prototype for studying cognitive 
ease in the face of environmental complexity, highlight-
ing how the initial work of concept development can 
ease the later work of complex decision-making.
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